Modelado de la entrada – Test de bondad de ajuste – función exponencial

EJERCICIO. I. Realice un Test de Bondad de Ajuste para indicar si se puede o no rechazar la hipótesis de que los datos recolectados a continuación siguen una distribución exponencial (utilice un nivel de confianza de $\alpha = 0,05$).

0.1	1.4	0.3	0.1	0.4	0.2	0.2	0.6	1.1	4.2
2.2	0.6	0.8	1.1	1.1	1.6	1.2	1.9	1.5	1.0
0.1	1.0	0.7	0.8	4.0	1.5	1.7	2.4	1.3	0.2
0.4	1.1	1.5	1.4	1.1	0.1	1.1	0.9	1.1	4.3
0.4	0.8	0.1	4.0	5.0	0.6	1.4	1.1	0.3	0.7
1.3	0.6	0.5	2.0	0.2	2.8	1.1	1.4	0.0	2.3

a) Arme una tabla con las columnas necesarias, con, al menos, la siguiente información:

i (Número de clase)	$[x_{i-1}, x_i)$ (intervalo de clase)	O_i	$\mid E_i \mid$	(columnas restantes)

Complete la tabla dejando expresados en papel todos lo cálculos auxiliares utilizados.

- b) Calcule el valor de x_0^2 a partir de la tabla del punto anterior (deje expresados los cálculos). Explique a continuación cómo se obtiene el valor crítico de la tabla $x_{\alpha,s}^2$ para un nivel de certeza del 95 %.
- c) Finalmente determine si es posible o no rechazar la hipótesis planteada para la distribución exponencial. Justifique claramente su afirmación.

Nota. Recuerde que las funciones de densidad y acumulada de la distribución exponencial son respectivamente: $f(x) = \lambda e^{-\lambda x}$ y $F(x) = 1 - e^{-\lambda x}$ (para $x \ge 0$).